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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL NOTE No. 1689

LOAD DISTRIBUTIONS DUE TO STEADY ROLL AND PITCH
FOR THIN WINGS AT SUPERSONIC SPEEDS

By W. E. Moeckel and J. C. Evvard

SUMMARY

A method is presented for determining the load distribution due
to steady roll and pitch for thin flat-plate wings whose plan form
is arbitrary except that a part of the leading edge must be supersonic.

For wings with straight supersonic leading edges, the load
distributions due to angle of attack, steady roll, and steady pitch
are explicitly evaluated and are computed for a famlly of wings whose
plan form includes most types of flow region commonly encountered.
Thege computations showed that negative 1lift existed toward the rear
of polnted wings whose aspect ratio was small. In steady roll,
negative loading occurred in reglons influenced by the edge of the
plan form at the opposite gide of the roll axis. When the pitch
axis was located near the semichord position, the load gradlent for
steady pitch was approximately in the chordwise direction, except
in regions influenced by subsonic trailing edges. High positive
loading occurred toward the front of the wing and high negative
loading toward the rear.

INTRODUCTION

A method is presented in reference 1 for determining the pressure
distribution over thin wings at supersonic speeds. The method is
based on an integration of the local source strength (which is
proportional to the local slope of the wing surface) over the regions
of the disturbed flow fleld that lie within the forward Mach cone
from a point on the wing surface. Reference 1 shows that the
contributions to the pressure coefficient of the disturbed fields
off the surface of the wing may be replaced by equivalent contribu-
tions of parts of the wing surface, and that some of the surface
integrals that are involved in the determination of pressure coeffi-
cient may be reduced to line integrals.

The reduction of surface integrals to line integrals is feasible
for all regions of a flat-plate wing except those influenced by
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interacting disturbed flow fields off the wing plan boundary. For
the wing shown in figure 1, for example, all reglons may be treated
by the methods of reference 1 except the small shaded regions at the
rear. The restriction that a portion of the leading edge must be
swept ahead of the Mach lines from the foremost point of the wing
thus guarantees that some portions of the wing will be subJject to
the methods of reference 1. For regions influenced by interacting
disturbed flow fields, more elaborate methods are required, such as

thoge used for delta wings in reference 2.

The load distributions due to roll and pitch have been determined
for some plan forms with straight edges in references 3 and 4. The
methods of reference 1 are applied herein to the determination of
these load distributions for more general classes of plan form, whose
edges may be curved. For a family of wings of the type showm in
figure 1, but having, for convenience, straight supersonlic leading
edges, the load distributions due to angle of attack, steady roll,
and steady pitch were computed. This type of wing was chosen
because it contains most types of flow field commonly encountered.

This analysis was completed at the NACA Cleveland laboratory
during January 1948.

SYMBOLS

The following symbols, some of which are illustrated in fig-
ure 2 to 6, are used throughout this report:

A: B) cl:

substitution terms
Cz, e o sy Clo

1
a, a', b, integration limits
b', ¢, ¢!
Cp pressure coefficient
k slope of straight leading edge in (u,v) coordinate
systenm
M Mach number
P gteady rate of roll, radlans per second
q steady rate of pitch, radians per second
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s
8,

u, v
Uy Yy
U3, V4

uy(v), vy(u),
y1(x)

uy(v), va(u),
y2(x)

us(v) [} /73(“-) )
Ys(I)

uy(v), vg(u),
y4(x)

v

area or area integration

area on wing surface

free-stream velocity (in x-direction)

variables of integration in oblique coordinates
oblique coordinates of point on wing surface

oblique coordinates of wing vertex

functions defining form of right supersonic leading
edge

functions defining form of left supersonic leading
edge

functions defining form of right subsonic leading
and trailing edges

functions defining form of left subsonic leading
and trailing edges

camponent of perturbation velocity in z-directiomn
(positive outward fram 2z = O plane)

Cartesian coordinates of point on wing surface
variables of integration in Cartesian coordinates
coordinate of roll axis
coordinate of pitch axis
angle of attack

M -1

w/U for top and bottom wing surface, respectively,
in y = constant plane
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ANALYSIS

A plan form that contains most types of wing region commonly
encountered is shown in figure 1. The downstream Mach lines from
the vertex and from the junctures of the subsonic and supersonic
gsections of the leading edges divide the plan form into nine types of
region that differ in the type and number of wing edges that affect
the pressure distribution. Reglons I and II are influenced only by
supersonic leading edges, whereas reglons III, IV, and V are affected
also by one subsonic leading or tralling edge. In reglons v1i, vii,
and VIII, the subsonic edges of both sides of the wing affect the
flow. The shaded areas represent regions that are affected by
interacting perturbed fields off the wing plan form and are not
easily treated by the methods of reference 1.

The essential equations required to determine the load distridbu-
tion for the type of wing shown in flgure 1 (without the shaded
regions) may be obtained from a congsideration of regions of types III,
IV, and V. For these types of region (influenced by supersonic
leading edges and only one subsonlic leading or trailing edge), an
expression was derived in reference 1 for the pressure coefficient
at a point (x,y) when that point is not influenced by vorticity off
the wing plan-form boundary. This expression is (see fig. 2):

a“r 3(03 + o)
o L2 St dfdn L2 —T atan
.o N=0? - #a2 || 2N@-0? - gy
Sw,1 8, 2
L2 Opdn L2 | (g +0Omp) dn
| Na-0Z - 22 C | 2 Nx-£)2 - E(y-n)?
ab bod
d
) p(§L), (o - o) &
+% (1)

SE. [1 + B(%—%)J ’d(x-i)z - g2 (y-n)?
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dx

form of the subsonic leading and tralling edges evaluated at the
intersection of the right forward Mach line from (x,y) and the wing
boundary (point d). Equation (1) was shown in reference 1 to contain
an additional term of a form similar to the line integral along the
Mach line bd. This additional line integral is related to the
vorticity behind the trailing edge and is therefore zero for leading
edges., For tralling edges, the nature of the line integral depends
on the conditions imposed. In particular, if the Eutta-Joukowski
condition 1s imposed, the additional line integral must be such that
it exactly cancels the integral along the Mach line bd. Henoe,
equation (1), without the last integral, can be used to determine the
preasure coefficient in regions influenced dy vorticity off the plan
form provided that the Kutta-Joukowskl condition is imposed at
subsonic trailing edges. The imposition of this comdition, although
arbitrary, is conventional and will be assumed in the reast of the
analysis. _

where (91) 1s the derivative of the equation defining the plan
3

For a flat-plate wing, the effective local slopes Oy and Orp

for determining the loading due to angle of attack, steady roll, and
steady pitch, are

3 (2)

o,=-§--§(n-no)* oa)

Op = £ (n - o) -

O’T--%--%(E-go) (2b)
2b

og"%(i'go) 3

where p and q are the rates of roll and pitch, respectively, in
radians per second, and 1o and £, are the distances from the
origin of coordinates to the roll axis and the pitch axis,
respectively. From equations (1) to (2b) the first, second, and
fourth integrals of equation (1) are seen to vanish for the pressure



NACA TN No. 1689

coefficient due to angle of attack and roll, whereas the second and
fourth integrals vanish for the pressure coefficient due to pltch.

It is convenient to convert the required integrals to an oblique
coordinate system whose axes are the rearward Mach lines from the
origin. The origin of the coordinates 1s taken at the Jjuncture of
the supersonic and subsonic parts of the leading edge. The conversion
equations are (fig. 3)

w=gb(t -m)  v=gglE o+ B)
g=§(v+u) q=§(v-u)
u, = -zb%(x - By) vy = -z%(x + By)
B 1
x = (v + uy) 7 = (v - ) (3)
2B

The elementary area in this coordinate system is v dudv. The

coordinates (uy, Vi) or (x,y) are used to represent the point

on the wing for which the pressure coefficlent is desired, whereas
(u,v) or (f,n) represent variables of integration. In the oblique
coordinate system, the equations for the load distributions due to
angle of attack, roll, and pitch become, respectively, (fig. 4)

du Vw
1.3
dav dv dv-du

4, Uy Uz M V-V Wuw-u) (vyy-v)
b a

(4)

Br = .2
Zacp— o

(1 du3> Vw
LU, .2 )\ _dv. (v-uz-Mng)dv
U To) P Mg Alu,w—us Alvw-v

b

2 b (v-u-Mng) (dv-du)
- g

(4a)

a M(uw-u)(vw~V)

eL6
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z&%cp - mgo -d“3 (v+u3-&go) av
N Uy=U3z

(v+u - -Eﬁo)( dv-du)
*Mio [

N (g2} (7-v)

- m?g— 2 f f dudv, (4v)
0 Su.1 'V (uy-u) (vg=v)

where u; and its derivatives are evaluated for v = vy. Equa-
tions (4), (4a), and (4b) can be integrated for arbitrary forms _
of u3(vw$, if u and v are linearly related along the line ab.

In other words, if the supersonic part of the leading edge is a
straight line, explicit expressions for the load distribution are
readily obtainable for arbitrary forms of the subsonic leading and
trailing edges. If the supersonic leading edge 1s not a straight
line, the load distributions due to angle of attack and roll may
still be obtained by means of a simple graphical integration along
the required part ab of the leading edge. The treatment of such
wings to determine the 1lift distribution is described in detaill in
reference 5. This method may be readily extended to determine the
line integrals along ab for load distribution due to roll and pitch.
The area integral required for the pitch loading (equation (4b)),
although somewhat more difficult to evaluate than the line integrals,
is also subject to stripwise, graphical integration methods.

The integrations fram b to v, 1n equations(4) to (4b)
(along the Mach line u = uz(v,)) are independent of the form of

the wing boundary and hence may always be explicitly integrated.

If the Kutta-Joukowski condition is imposed at the trailing edge,

these integrals need be evaluated only when the right forward Mach
line fram (u,,V,) intersects the plan-form boundary at a subsonic
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du
leading edge (o <=2 <1). If the right forvard Mach line inter-

du,
sects the plan-form boundary at a subsonic trailing edge (—5;§-> J) ’
the integrals along u = uz(v,) vanish.

The analysis may now be extended to regions of the wing
influenced by all its subsonic leading and trailing edges. In general,
such regions may be of two types (figs. S(a) and 5(b)). In both types
of region, the left forward Mach line from (uw,vw) intersects a
subscnic leading or trailing edge at the opposite silde of the wing.

In figure S(a), (u,,%,) 1les in a region of type VI (£1g. 1), for
which the reflections of the forward Mach lines at the wing boundaries
do not intersect on the wing surface. In figure 5(b), ("v,vw) lies
in a region of type VIII, for which the reflections of the forward
Mach lines cross on the wing surface. For both types of reglon, the
methods of reference 1 indicate that an additional line integral
along the Mach line v = vg(u,) must be added to equation (4). These

integrals are the same as those along u = u3(vw) , except that v
replaces u, and vg replaces ugz. The sense of the integration 1is
again from the supersonic leading edge vy or vz to the subsonic
edge v4. The integratlon alang Vv = vy, like that along u = ujz,
vanishes (for solutions that satisfy the Kutta-Joukowskl condition)

if the forward Mach line fram (uy,v,) intersects a subsonic trailing
edge (as it does, for example, in fig. 5(b)).

Along the supersonic leadlng edge, the sense of the integration
is from & to b__for both types of region. The values of the line
integrals along ab are thus of opposite sign for figures 5(a) and 5(b).

The area integrations for the pitch loading (equation (4c)) extend
over the shaded areas of figures 5(a) and 5(b). For the type of
region shown in figure 5(b), the area integration consists of two
parts. The integration over the downstream area is independent of
the form of the supersonic leading edge. The integration over the
upstream area depends on the contour of the supersonic leading edge.
This integration is subtracted from the integration for the lower area,
because two area cancelations are involved, ome for each of the reglocns
off the two subsonic leading edges (reference 1).

For regicns of type VII (£ig. 1), both right end left reflected:
Mach lines intersect the plan-form boundary along the same supersomic
leading edge. A point in this region is like a point in region Vil
1f the Mach lines cross on the surface and is like & point in
region VI if the Mach lines do not cross.
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For regions of types I and II, both forward Mach lines intersect
the plan-form boundary at supersonic leading edges. Hence, all of
the line integrals except that alcong the supersonic leading edge
vanish, and the limits for this integral are the points of Iintersec-
tion of the forwepd Mach lines with the leading edge. The area
integration for the pitch loading extends over the region bounded
by the forwerd Mach lines and the leading edge.

APPLICATION TO WINGS WITH STRAIGHT
SUPERSONIC LEADING EDGES

When the wing 1s symmetrical and a section of the leading edge
on both sides of the line of symmetry is straight and swept ahead
of the Mach lines from the vertex, the equations for the supersomic

Mo v
leading edges are u; = - kv and up = —]-:-(l-k) - g+ The origin of

coordinates is taken at the juncture of the supersonic and subsonic
leading edges (fig. 6). The axis of symmetry is ldentified with the
roll axis. For a gemeral regicn on such & wing, line integrals are
required along the Mach lines reflected from the subsonic leading
edges and along the two sections of the supersonic leading edge.

The limits for these line integrals, as well as those for the area
integration required for pitch loading, vary with the type of region
considered. The presentation is simplified 1f the expressions for
a general region are first evaluated and the appropriate limits for
each region are then indicated.

In the following expressions for the load distributions due to
angle of attack, steady roll, and steady pitch, respectively, the
first integral is the line integral along V = 74(1.1), the second is
the integral along u = uz(v), the third le along u = uy (v), and

the fourth is along u = up(v):

dug Vw
1 - —— l- =
Vg }{uv-u Mfu‘,-us ' A‘ V-V
a c

14k Jc du - (1+k) b du
“ k
bt M(“v'“)(vw"%) at Mr(uv-u)[vw&u-mo(l-k)]
(

5)
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dv, Uy
amo (gp )\ 1T W (v4-u-Mng)du
- — ZEBCP =
Vy~Va M“w‘“
v v a
duz | ¥ 1+
. -5 (v-ug-Mn)av , Lk (‘T:E‘”M"O)du
k
M UgmUz o A’ Yy-V o l\{(uw-u) (vw-la‘l_;)
(145) b [u(l+k) + and]du (58)
+ (1+
ot V(u,w-u) [vv+1m-M'qo(l-k)]
(e L | oo
T 2B af o ——— -
w4 Uy, ~u
LS I
dug Vv M © (1k M
1-5= (v+u3-§£o)dv . 14k (-i—u+ Bﬁo)du

— k
M Uy~u3 Nve-v . Aﬁu.w—u) (vyy)

cl

b M
1- 1-k) - St (a
- (14k) 20 amg(a-0) - e + 28 ~ (sp)

M(uw-u) [, Hieu-Mn o ( 1-k)]

’al
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s =;[Jﬁ dudv
s, \ (vy-u) (7=v)

1s the integration over the required areas for each region.

where

From these integrals, the following explicit expressions are
obtained for the load distributions due to angle of attack, steady
roll, and steady pitch, respectively:

dv ) du V~C'
B~ _ _ 4 4 A,“w 3 w
2 = " x [( B du) Va4 <l B dv) uw-us:]

(6)
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The appropriate limits for each of the eight regions shown in

figure 6 are given in the foll_owing table: 'é;:
Wing regions (fig. 6)
Limit
I IT | 111 v v VI Vi1 VIII
’ Mng Mng
a Wy | Uy u, u, Uy T(l-k)+ —k—-(l-k) + “kvy
V4 M
Tk "Xk
Mn n
o' luy [w | w | we | w |00 2R v
V4 'V'4
"X "k
b u, | vy u, vy uz Uy uz uz .
b' u.w ud u.w ud u3 ud u3 -kV4
¢ |-kv,|-kvy| uz uz Uz uz ug uy
c' Vol % —u3/k -u3/k ~kuz + -u3/k -kuz + “kuz +
M5 (1-k) Mno(1-k) | Mng(1-k)

An examination of equations (6) to (6b) shows that the arc-tangent
factors are the same for each type of load distribution. The square-
root terms are also the same for the roll and pitch loadings.
Application of the foregoing table to equations (6) to (6b) shows
that many terms vanish for same of the wing regions because the upper
and lower limits are identical. The location of these limits for
regions of types VI and VIII are shown in figure 5.

The expressions for S 1n each reglon are:
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15

.
Region Area Integration, S
7
I 5 A
n
IIT j2C5 + ACy
IV |2Cz + A(Cy - Cy) + BC,
vV |2Cg + BCG
<
VIII Z(C5 + Clo) + A(Cl - Cg) + B(C‘5 - Cz)
where
A= IJZ___IE (v, + kv) Cg = Al(uv-uz)) [, +iuz -Mn o (1-k)]
: | k(u,~uxz)
2 -1 Uy -U3
B = —— +v. =M~ (1-k) Cp = tan
I\J_IE [kuw w0 ] 6 V. +ku3-M'qO(1-k)
_ -1 Uy -Ug Mn
Cy = tan klvw-vds Cq = V[u,,ﬁ 4 0(l k):l (vw-V4)

k(uy-uz) _ kug+v4-Mng(1-k)
Cz = tan-l _—_Lg—— 08 = tan 1 e
Yw-va W '4 '

uz - Uy +kvy
03 = V(uw-us) (VW+T:—) Cg = tan 1 m
-n ' .
C4 = tan~t e Ci0 = '\] (uy+kvy) (vy-vye)

kv +u3
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Equations (6) to (6b) have been used to calculate the load
distributions due to 1lift, roll, and pitch for the wing shown in

figure 7, For computation, use of the coordinates “w/M"]Ol
end v,/M|ng| rather than wuy,v, was convenient. .These coordinates

make equations 6 to 6(b) nondimensional.
B[ng)

For the wing shown in figure 7, the ratio T was taken
0

equal te 1.0. The value of k 1is 1/3. The equations for the
subsonlc edges were assumed to be

__Eé_.g 4GIJLT>3
M[no| Ino

V4 (4 u )3
—_—=1+4 -1 (7)
Mng| Inol '

In order to satisfy the Kutta-Joukowski condition, the integral
along u = uz 1s zero for vw/(Mlnol) > 12'1/2; and the integral
along v = v4 18 zero for uv/(M ]nol) >1 + 12'1(2, because

and —— are then greater than unity.

The contour of the wing is represented in figure 7 for a Mach
nunber of l( 2, although in the (u,v) coordinate system the plot
represents a series of wings whose spatial contours vary with Mach
number according to equations (7) and the value k = 1/3. Hence
the load distributions calculated for this wing apply directly to,
all wings of the series defined by k = 1/3 and equations (7). The
load distributions for a considerable variety of plan forms, at a
given Mach number, can be obtained from the load distributions
calculated for the wing of figure 7 by terminating the wing with any
form of supersonic trailing edge. The load distributions for the
remaining regions of the wing are unaffected by such changes.

The effect of altering the location of the roll or pitch axes
can be determined with the aid of the superposition principle. If
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the roll and pitch axes are shifted to 7, eand £,, respectively,
then equations (2a) and (2b) become, for roll,

Op = - 12]("."0) - 5(7‘0‘“1)

op = E(n-ng) + Bng-ny) (8)
and, for pltch,

op = - $t-t) - $to-ty)

Op = Ht-ty) + Fo-ty) (8e)

Because %(no-nl) and %(Eo-il) are constants, the contributions

to the load distributions due to these terms are exactly equivalent
to the load distributions due to the corresponding angles of attack.
Thus, if the load distributions are computed for the axes 1ng

and EO (or for some relation such as quol/ﬁo =1, as assumed

for the wing of fig. 7), the load distributions for roll or pitch
about any other axes are simply the load distributions for the
axes 1, and io plus the 1ift distributions for the angles of

attack:

f
n

x %("lo-ﬂl)
and

e %( EO' gl)

[+

L}

For a family of wings whose contour 1s represented by the
value k = 1/3, and equation (7), the load distributlons due to
angle of attack, steady roll, and steady pitch are shown in fig-
ures 8, 9, and 10, respectively. The dashed lines in these flgures
are Mach lines that separate the various regions indicated in

figure 7. The additional Mach lines at u,/(M|ng|) = 1.29 and
at vv/(Mlnol) = 0.29 geparate the reglons influenced by the subsonic
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trailing edges from those influenced only by leading edges. The pres-
sure coefficlent is zero along the subsonic tralling edge for each
type of loading, because the Kutta-Joukowski condition was imposed

in each case. Along each subsonic leading edge the pressure coeffi-
clent is infinite. .

The lift distribution shows that positive 1ift exists on all
parts of the wing surface except the extreme rearward tip (region VIII
and part of region VII). This negative region is a result of the
upwash over the subsonic edges. The lift decreases rapidly toward
the subsonic edges. The reglon of the wing having the highest 1ift
is that bounded by the leading edges and by the Mach lines from the
beginning of the trailing edges.

For steady roll (fig. 9), the loading is negative in the outboard
part of region IV and in nearly all of regions V, VI, and VII. In
region VIII, the loading again becomes positive. The large negative
region results because the greatest contribution to the loading
proceeds from the leading edge on the opposite side of the wing,
where the vertical component of the perturbation velocity 1s of

opposite sign.

The load gradient for steady pitch (fig. 10) is primarily in
the chordwise direction, except in the regions influenced largely by
subsonic trailing edges. High positive loading occurs toward the
front of the wing and high negative loading toward the rear. The
loading becomes negative ahead of the pitch axis because the contribu-
tion due to the area integration and the contribution due to the line
integrals are of opposite sign shead of the pitch axis (f£g5 > £). The
loading therefore changes sign when the contribution of the integrals
over the area included in the forward Mach cone is sufficlently
large to overbalance the contribution due to the line integrals.

SUMMARY OF THEORY AND RESULTS

A method has been presented for determining the load distribution
due to steady roll and steady pitch on thin wings whose plan form 1is
arbitrary except that a part of the leading edge must be supersonic.
When the supersonic part of the leading edge 1s a straight line,
these load distributions can be explicitly evaluated for all regions
of the wing except those influenced by interacting flow fields off
the plan form.

For a particular family of wings having a plan form that
includes most types of flow field commonly encountered, the load
distributions due to angle of attack, steady roll, and steady pltch
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were computed. The 1lift distribution for this family of wings
showed that negative 1ift may exist toward the rear of pointed
wings if the aspect ratio is small. The highest 1ift occurred in
regions affected only by leading edges. In steady roll, negative
loading occurred in regions influenced by the edge of the plan form
at the opposite mide of the roll axis. At the extreme rear of a
low-aspect-ratio wing, the loading agaln became positive. With the
pitch axis located near the semichord position, the load gradient
for steady pltch was primarily in the chordwise direction except

in regions Influenced by subsonic trailing edges. High positive
loading occurred toward the front of the wing and high negative
loading toward the rear.

Flight Propulsion Research Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, May 15, 1948.
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Figure 1, —~ Types of wing region commonly encountered at super-
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Figure 6, — Geometric parameters for symmetrical wing with stralght
supersonic leading edges and arbltrary subsonic leading and trail- «

ing edges.
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of wings defined by k = 1/3 and equations

- Lift distribution for series

Figure 8,
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and equations

wing defined by k = 1/3

- Load distribution in steady roll for

Figure 9.
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